home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
IRIX 6.2 Development Libraries
/
SGI IRIX 6.2 Development Libraries.iso
/
dist
/
complib.idb
/
usr
/
share
/
catman
/
p_man
/
cat3
/
complib
/
zhsein.z
/
zhsein
Wrap
Text File
|
1996-03-14
|
7KB
|
199 lines
ZZZZHHHHSSSSEEEEIIIINNNN((((3333FFFF)))) ZZZZHHHHSSSSEEEEIIIINNNN((((3333FFFF))))
NNNNAAAAMMMMEEEE
ZHSEIN - use inverse iteration to find specified right and/or left
eigenvectors of a complex upper Hessenberg matrix H
SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL,
VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO )
CHARACTER EIGSRC, INITV, SIDE
INTEGER INFO, LDH, LDVL, LDVR, M, MM, N
LOGICAL SELECT( * )
INTEGER IFAILL( * ), IFAILR( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), W( * ),
WORK( * )
PPPPUUUURRRRPPPPOOOOSSSSEEEE
ZHSEIN uses inverse iteration to find specified right and/or left
eigenvectors of a complex upper Hessenberg matrix H.
The right eigenvector x and the left eigenvector y of the matrix H
corresponding to an eigenvalue w are defined by:
H * x = w * x, y**h * H = w * y**h
where y**h denotes the conjugate transpose of the vector y.
AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
EIGSRC (input) CHARACTER*1
Specifies the source of eigenvalues supplied in W:
= 'Q': the eigenvalues were found using ZHSEQR; thus, if H has
zero subdiagonal elements, and so is block-triangular, then the
j-th eigenvalue can be assumed to be an eigenvalue of the block
containing the j-th row/column. This property allows ZHSEIN to
perform inverse iteration on just one diagonal block. = 'N': no
assumptions are made on the correspondence between eigenvalues
and diagonal blocks. In this case, ZHSEIN must always perform
inverse iteration using the whole matrix H.
PPPPaaaaggggeeee 1111
ZZZZHHHHSSSSEEEEIIIINNNN((((3333FFFF)))) ZZZZHHHHSSSSEEEEIIIINNNN((((3333FFFF))))
INITV (input) CHARACTER*1
= 'N': no initial vectors are supplied;
= 'U': user-supplied initial vectors are stored in the arrays VL
and/or VR.
SELECT (input) LOGICAL array, dimension (N)
Specifies the eigenvectors to be computed. To select the
eigenvector corresponding to the eigenvalue W(j), SELECT(j) must
be set to .TRUE..
N (input) INTEGER
The order of the matrix H. N >= 0.
H (input) COMPLEX*16 array, dimension (LDH,N)
The upper Hessenberg matrix H.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
W (input/output) COMPLEX*16 array, dimension (N)
On entry, the eigenvalues of H. On exit, the real parts of W may
have been altered since close eigenvalues are perturbed slightly
in searching for independent eigenvectors.
VL (input/output) COMPLEX*16 array, dimension (LDVL,MM)
On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must contain
starting vectors for the inverse iteration for the left
eigenvectors; the starting vector for each eigenvector must be in
the same column in which the eigenvector will be stored. On
exit, if SIDE = 'L' or 'B', the left eigenvectors specified by
SELECT will be stored consecutively in the columns of VL, in the
same order as their eigenvalues. If SIDE = 'R', VL is not
referenced.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= max(1,N) if SIDE
= 'L' or 'B'; LDVL >= 1 otherwise.
VR (input/output) COMPLEX*16 array, dimension (LDVR,MM)
On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must contain
starting vectors for the inverse iteration for the right
eigenvectors; the starting vector for each eigenvector must be in
the same column in which the eigenvector will be stored. On
exit, if SIDE = 'R' or 'B', the right eigenvectors specified by
SELECT will be stored consecutively in the columns of VR, in the
same order as their eigenvalues. If SIDE = 'L', VR is not
referenced.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= max(1,N) if SIDE
= 'R' or 'B'; LDVR >= 1 otherwise.
PPPPaaaaggggeeee 2222
ZZZZHHHHSSSSEEEEIIIINNNN((((3333FFFF)))) ZZZZHHHHSSSSEEEEIIIINNNN((((3333FFFF))))
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR required to
store the eigenvectors (= the number of .TRUE. elements in
SELECT).
WORK (workspace) COMPLEX*16 array, dimension (N*N)
RWORK (workspace) DOUBLE PRECISION array, dimension (N)
IFAILL (output) INTEGER array, dimension (MM)
If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left eigenvector
in the i-th column of VL (corresponding to the eigenvalue w(j))
failed to converge; IFAILL(i) = 0 if the eigenvector converged
satisfactorily. If SIDE = 'R', IFAILL is not referenced.
IFAILR (output) INTEGER array, dimension (MM)
If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right eigenvector
in the i-th column of VR (corresponding to the eigenvalue w(j))
failed to converge; IFAILR(i) = 0 if the eigenvector converged
satisfactorily. If SIDE = 'L', IFAILR is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, i is the number of eigenvectors which failed
to converge; see IFAILL and IFAILR for further details.
FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
Each eigenvector is normalized so that the element of largest magnitude
has magnitude 1; here the magnitude of a complex number (x,y) is taken to
be |x|+|y|.
PPPPaaaaggggeeee 3333